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Abstract— Proportional-integral-derivative (PID) control is 

the most prevalent form of feedback control for a wide range of 

real physical applications. Traditional PID control theory is 

built on transfer function models. In this paper, we try to extend 

PID control to state-space models. Two formulations are 

presented to form an extended PID (EPID) control framework. 

One is the proportional-integral tracking controller (PITC), 

which includes a proportional and an integral part of all state 

errors. The other is the adaptive feedforward tracking 

controller (AFTC), which consists of a feedback part of state 

errors and a feedforward part which is obtained adaptively by 

using the previous sampled input. An interesting observation is 

that the two extended PID formulations are shown to be 

equivalent. EPID provides us a new perspective to view the 

mechanism of PID control itself as well as its relationship with 

other control theories such as tracking control, iterative 

learning control, and disturbance observer. All the points are 

demonstrated through a cart-pendulum example. 

I. INTRODUCTION 

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) 
control is the most widely used controller today. A PID 
controller is a sum of three components, that is, the 
proportional, integral, and derivative of the output error, 
which represents the present, the past, and the future 
information of the system, respectively. Due to its simplicity, 
PID can be easily understood by control engineers and 
applied to a wide variety of real-world control problems. It is 
estimated that over 90% of industrial control loops are using 
PID control [1].  

The history of PID control can date back to Elmer 
Sperry’s ship autopilot in 1910. Over the last century, 
numerous works have been done on PID control in both 
academic and industrial fields. A detailed summarization can 
be found in the review articles [2-4] and related books [5-6]. 
As can be observed in [2-6], studies on PID control are mostly 
about tuning rules, identification schemes, and adaptation 
techniques. With the development of linear control [7], 
optimal control [8], nonlinear control [9], adaptive control 
[10], robust control [11], etc., modern control theory has had 
a rapid development. Studying PID control in a modern 
perspective then becomes an interesting topic. Reference [12] 
gives an analysis on PID controller design for second order 
nonlinear uncertain systems. And the recently developed 
control technique, active disturbance rejection control 
(ADRC) [13-14] also inherits from PID.  
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To date, the research on PID control are primarily based 
on transfer functions. As we know, a common formulation for 

PID control is usually written as  
0

t

p i du k e k e d k e    , 

where u  is the control input, e  is the output tracking error, 

and , ,p i dk k k  are gains for the proportional, integral, and 

derivative part, respectively. However, this classical PID 
formulation does have some drawbacks. Firstly, it is directed 
at single input single output (SISO) systems. Although some 
efforts have been made to extend it to multi-input 
multi-output (MIMO) systems [16-17]. None of them have 
given a generic formulation that is widely accepted as far as 
we know. Secondly, PID control treats all systems the same 
without considering the system characteristics, such as the 
system order. Such ignored system features may influence the 
control performance.  

In modern control theory, a landmark is the state-space 
approach [15] pioneered by Kalman, which describes the 
system dynamics by state variables. An advantage of this 
description is that it reflects the complete information of all the 
system states. In this paper, an extended PID (EPID) control 
framework is proposed based on the state-space models. 
Specifically, two equivalent formulations of EPID are 
investigated, including proportional-integral tracking 
controller (PITC) and adaptive feedforward tracking 
controller (AFTC).  Based on this framework, some new 
insights are given for PID control. First, it is found that for 
minimum phase systems, the integral gain might be set very 
high without breaking the system stability. And a high integral 
gain helps improve the tracking accuracy and reject 
disturbances. Second, EPID also reveals the relationship 
between PID control and other control theories, including 
tracking control, iterative learning control, and disturbance 
observer. The contribution of this paper is the extension of 
PID control to state space. EPID gives a unified PID control 
framework for SISO/MIMO and lower-order/higher-order 
systems, where PI and PID control are special cases of EPID 
for first-order and second-order SISO systems, respectively.  

The rest of this paper are organized as follows. Section II 
introduces PITC. Section III investigates the features of a high 
integral gain. Section IV introduces AFTC. Section V 
summarizes the proposed EPID framework. Section VI gives 
the simulation results of a cart-pendulum system and Section 
VII concludes this paper. 

II. FROM PID TO PITC 

The classical PID control theory is based on the transfer 
function description of system models. In this section, an 
extended PID formulation is developed by using the 
state-space description of system models. 

In linear control theory, a system is expressed in a 
state-variable form 
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



x Ax + Bu

y Cx
 (1) 

where , ,n n n m m n    A B C  are system matrices,  
nx  is the state vector, , mu y  are the input vector and 

output vector, respectively. Compared to the transfer function 
description, this model description is more complete since it 
reflects all the state information. For this system, a typical 
feedback controller is designed as follows 

 u Kx  (2) 

where m nK  is the control gain matrix.  It leads to the 

following closed-loop system 

 

   x A BK x  (3) 

It is well known that the pole assignment method can be 
used to design the feedback gain to make the closed-loop 
system asymptotically stable if system (1) is controllable.  

More generally, this controller can also be applied to 
tracking control with minor modification. Suppose the 

desired output reference is r
y . Define the state reference r

x  

and the ideal input r
u  as the solution of the following 

dynamic equation 

 
 



r r r

r r

x Ax Bu

y Cx
 (4) 

Denote  
r

e x x  as the state error. Subtract (4) from (1) 

gives the error dynamics  

    
r

e Ae B u u  (5) 

Then the tracking controller can be designed as  

  
r r

u = u +K x x   (6) 

Substituting (6) into (5) follows that  

   e A BK e   (7) 

which has the same form as (3).  

For convenience, we will call (6) as the linear tracking 
controller, which is widely used in inversion-based control 
[18-19] and output regulation [20-21]. The linear tracking 
controller not only applies to linear systems, but also can 
achieve asymptotic tracking for nonlinear systems. Its exact 
output tracking capability is benefited from the exact solution 

of the feedforward r
u  and the state reference r

x , which are 

the key for exact tracking. This controller can be interpreted 

as: the feedforward r
u  provides the needed control input for 

exact tracking, while the feedback  
r

K x x

 

provides 

correction when the system states are deviated from the state 
reference and thus keeps the system locally stable along the 
desired trajectory.  

It is noted that all state errors are used for feedback in the 
linear tracking controller (6). However, it is not always easy 

to obtain the feedforward r
u  and the state reference r

x  from 

the output reference 
r

y , especially for nonminimum phase 

systems where the internal state reference should be a 
bounded solution of the unstable zero dynamics [18-19]. For 
convenience, we will focus on minimum phase systems in 
this paper. 

Consider a MIMO minimum phase system with m inputs 

and m outputs. Denote   1 2, ,...,
T

mu u uu  as the input vector, 

 1 2, ,...,
T

my y yy  as the output vector. Suppose the relative 

degree for the output is  1 2, ,..., mr r r , which represents the 

order of differentiations for the output when any input 
appears. Then the input-output dynamics can be written as 
follows: 

 
   ,
r
 y F x u d   (8) 

where  r
y is defined as        1 2

1 2, m
T

rr r r

my y y 
 

y ，..., , 

   1 11

1 1 1, ,..., ,..., , ,..., m
T

rr

m m my y y y y y
 

 
x  is the state vector, 

and  1 2, ,...,
T

md d dd  represents some matched 

disturbances. The system may also have internal dynamics 
which are not reflected in the input-output dynamics. 
However, they do not need to be taken care of since they are 
stable for minimum phase systems and thus can be treated the 
same as the disturbance d . 

For this system, it has a very good property that once the 

output reference        1 2, ,...,
T

r r mrt y t y t y t   ry  are 

given, then all the state references are known, that is, 

   1 11

1 1 1, ,..., ,..., , ,..., m
T

rr

r r r mr mr mry y y y y y
 

 r
x , which is 

independent of the system model. Therefore, all the state 

tracking error  
r

e x x  are available for feedback control.  

For system (8), by using state error instead of output error, 
the PID controller can be written in the following form 

    
0

1 t

i

d
T

   p r p ru K x x K x x   (9) 

where m n
p

K  is the proportional gain matrix and iT  is 

the integral time (integral gain defined as 1/i ik T ). It 

should be noted that the derivative part is not missing, it is 
actually contained in the proportional part since the state error 

vector 
r

x x  contains the derivative of the output error when 

the system relative degree is bigger than 1.  

The controller (9) has the same structure as a PI controller, 
so we call it proportional-integral tracking controller (PITC). 
Compared to a PID controller, the proportional gain in PITC 
becomes a matrix while the integral time is still a scalar 
parameter. PITC takes advantage of the state-variable 
description, which allows it to be applied to both SISO and 
MIMO, lower-order and higher-order systems. It is also 
compatible with the classical PID formulation since that PI 
and PID control can be seen as particular cases of PITC for 
first-order and second-order SISO systems, respectively. 
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III. THE FEATURES OF A HIGH INTEGRAL GAIN 

High-gain feedback has been studied in a variety of 
articles [22-24]. However, less attention has been paid on 
high-integral-gain control [25]. As we know, the integral term 
in PID control is very special. It can compensate the system 
uncertainties automatically and leads to zero steady-state 
error for constant reference/disturbance. This section will 
study the features of a high integral gain through two typical 
examples. 

Consider a typical first-order system x u d  , where d  

is the external disturbance. Denote the tracking error as 

re x x   where rx  is the reference trajectory. Using the 

PITC  

 
0

t

p i pu k e k k ed      (10) 

where , 0p ik k  . The closed-loop system becomes 

 
0

t

p i p re k e k k ed d x       (11) 

Consider rd x  as a lumped disturbance, then the transfer 

function of the closed-loop system from rd x  to e  is 

obtained as 

 
 

  2

p p i

E s s

D s s k s k k


 
  (12) 

Since the parameters satisfy , 0p ik k  , it is easy to verify 

that the closed-loop system is stable and ik  can be as large as 

we want. 

Similarly, for a typical second-order system x u d  , 

using the PITC 

 
 

 

0

0

t

p d i p d

t

p d i d p i

u k e k e k k e k e d

k k k e k e k k ed





     

    




  (13) 

where , , 0p i dk k k  . The closed-loop system becomes 

  
0

t

d p d i p i re k e k k k e k k ed d x         (14) 

The transfer function of the closed-loop system from the 

lumped disturbance rd x  to e  is obtained as 

 
 

   3 2

d p d i p i

E s s

D s s k s k k k s k k


   
  (15) 

It is easy to verify that the closed-loop system is stable if 

the parameters satisfy , , 0p i dk k k   and  2

p d i p dk k k k k  . 

Moreover, if we let 2

p dk k , then ik  can be infinitely large 

without breaking the stability of the closed-loop system.  

It is assumed that the lumped disturbance is bounded so 
that the tracking error is also bounded. Then Bode diagram 
can be used to evaluate the influence of the lumped 
disturbance on the tracking error. We are interested in the 

influence of the integral gain. Therefore, we fix ,p dk k  and 

change ik  to see the differences. By selecting 2pk   for the 

first-order system and 4p dk k   for the second-order 

system, the magnitude responses of the transfer functions (12) 
and (15) are shown in Fig. 1 (a) and (b), respectively. 

(a)                                                  (b) 

Figure 1.  Bode diagram from lumped disturbance to tracking error for (a) 

first-order system (b) second-order system. 

It can be seen that both figures show the same trend, that 
is, as the integral gain increases, the frequency corresponds to 
the peak point moves to the right and the magnitude response 
has a significant drop at low frequency. Since the lumped 
disturbance is composed of the output reference and the 
external disturbance, it indicates that a high integral gain is 
beneficial to suppress low-frequency disturbances and track 
slow-varying signals. With a relatively high integral gain, the 
magnitude response can be made very low at a wide 
frequency range, so that the influence of the disturbance can 
be neglected, and thus precision tracking can be achieved.  In 
a sense, the integral part with a high integral gain is very 
similar to a disturbance observer [26], whose function is to 
compensate the disturbance.  

To sum up, this section has shown two important features 
of a high integral gain. First, it shows that for minimum phase 
systems, the integral gain might be set very high without 
breaking the system stability. Second, a high integral gain 
helps improve tracking accuracy and reject disturbance. 
Although the conclusions are obtained from two simple 
examples, they may also work for more complicated 
nonlinear systems, which is verified later through a 
cart-pendulum system. 

IV. FROM PITC TO AFTC 

In this section, a transformation is made on PITC to get 
another extended PID formulation. For the PITC formulation 

(9), the following approximation holds when iT  is small  

  

 

 

0

0

0

0

1

1

1

1

i

i

i

i

t

i

t T t

t T
i

t T

i i

i

t T

i

i

i

d
T

d d
T

d T t T
T

t T d
T

t T



 













 

   
  

    
  

 
    

 

  



 





p p

p p p

p p p

p p p

p

u K e K e

K e K e K e

K e K e K e

K e K e K e

K e u

  (16) 
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Therefore, it leads to another EPID formulation 

  it T  
p

u u K e   (17) 

In this formulation, the input is a sum of the previous 
input with a small time delay plus the current error feedback. 

The formulation (17) is very simple but it reflects some 
deep mechanism. First, it  is very similar to the linear tracking 

controller  
r

u u Ke , only with the feedforward r
u  

replaced by the delayed input  it Tu . Therefore, it can be 

speculated that the delayed input actually plays the role as a 
feedforward. The difference is that the feedforward in (17) is 
obtained adaptively by using the previous input, which does 
not require exact model knowledge. Therefore, we will call 
formulation (17) adaptive feedforward tracking controller 
(AFTC).  

What’s more, another controller, the iterative learning 
control [27-29] also has a very similar form. Iterative learning 
control is used for a repeated process, which generates a 
feedforward control that tracks a specific reference or rejects 
a repeating disturbance by learning from several iterations. 
The simplest iterative learning controller [29] is 

      , , 1 , 1t k t k t k   u u Ke   (18) 

where k  is the repetition index. It can be seen that the input 

in the current operation is determined by the input of the 
previous operation plus the proportional contribution of the 
tracking error in the previous operation. As the operation 
repeats, the input will converge to the ideal input that yields 
an exact tracking. If we discretize the AFTC (17), it becomes 

      1k k kt t t 
p

u u K e   (19) 

where k it kT  is the discrete time step. It can be observed 

that the current input is determined by the input of the 
previous time step plus the proportional contribution of the 
tracking error in the current time step, which is very similar to 
(18). Compared to the iterative learning controller (18), 
AFTC is much more efficient since it learns in real time, with 
no need to repeat the process for several times. 

V. THE EPID FRAMEWORK 

In this section, the EPID framework and its relationship 
with other control techniques are summarized. As shown in 
Fig. 2, EPID includes PITC and AFTC, where PID is a 
particular case of PITC.  

The integral part in PITC is equivalent to the feedforward 
part in AFTC, whose function is holding; while the 
proportional part in PITC corresponds to the feedback part in 
AFTC, whose function is correcting. This also gives us 
another perspective to view the three components in PID 
control. The integral part which uses the past information 
actually plays the role as a feedforward, which is a kind of 
prediction; while the derivative part, which used to be thought 
as a prediction, is an ordinary state feedback which has the 
same role as the proportional part in PITC. 

EPID is also closely related to many other control 
techniques, including tracking control, iterative learning 
control, and disturbance observer technique.  

PITC：

Holding

   it T   
P r

Feedback Feedforward

u K x x uAFTC：

   
0

1 t

i

d
T

   P r P r

Proportional part Integral part

u K x x K x x

Correcting

EPID

PID：      
0

t

p r d r i ru k y y k y y k y y d     
Derivative partProportional part Integral part

 
Figure 2.  The EPID framework. 

EPID and PID: EPID is an extended version of PID 
control. EPID takes advantage of the state-space model 
description and replaces the output error in PID control by 
state error. PI and PID control are particular cases of PITC for 
first-order and second-order SISO systems, respectively. 

EPID and Iterative Learning Control: AFTC and 
iterative learning control [27-29] have similar control 
structure. The feedforward in AFTC is also obtained 
iteratively. Compared to iterative learning control, EPID is 
learning in real time, with no need to repeat the process for 
several times. 

EPID and Tracking Control: AFTC also has similar 
structure to the linear tracking controller (6) which is widely 
used in inversion-based control [18-19] and output regulation 
[20-21]. However, both inversion-based control and output 
regulation depend on system model to find out the 
feedforward signal. In output regulation theory, the 
feedforward is obtained by solving the regulation equation; 
while in inversion-based control theory, the feedforward is 
obtained from model inversion. Thus both of them are 
sensitive to model uncertainties and disturbances. But in 
EPID, the feedforward is obtained adaptively without need to 
know exact model knowledge. 

EPID and Disturbance Observer: EPID is a special 
type of disturbance observer-based controller [26]. The 
integral part plays the role as a disturbance observer, but it 
must cooperate with the proportional part and cannot work 
independently. 

In a word, EPID not only extends the PID control 
framework, but also builds a bridge between different control 
techniques which is important for us to understand their inner 
relationships.  

VI. THE CART-PENDULUM EXAMPLE 

A cart-pendulum system is shown in Fig. 3, which is 
composed of a cart that can move in the horizontal plane and a 
passive pendulum that can rotate freely along the pivot.  

u

x



 
Figure 3.  The cart-pendulum system. 
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In fig.3, u  is an external force imposed on the cart, x  is 

the cart position,   is the pendulum angle, m and M  are the 

mass of the pendulum and the cart, respectively, l  is the half 

length of the pendulum. The equations of motion are  

 
 

 

 

2

2

2

2

3 sin cos 4 sin 4

4 3 cos

3 sin 3 sin cos 3cos

4 3 cos

x v

mg ml u
v

M m m

M m g ml u

M m l ml

   



 

    






 


 



   


 

 (20) 

For this system, we select the output as the cart position. 
Particularly, we only consider the control of the cart motion 
while the pendulum motion is treated as a disturbance so that 

,   will not be used in the controller. Therefore, the system 

state vector is  ,
T

x vx .  

In the simulation, the model parameters are selected as 

1m kg , 10M kg , 1l m , and 
29.8 /g m s . The 

proportional gain is designed as  2, 20  
p

K  and the 

integral time will use different values. The initial condition is 
set to zero for all states. As a practical consideration, the 
control input is assumed to be limited in the range 

 30,30u  .  For a sinusoidal output reference sinrx t , 

the simulation results are shown in Fig. 4 and Fig. 5.   

From Fig. 4, it can be observed that the system keeps 

stable as ik  changes from 0 to 50. The tracking error is big 

when the integral action is turned off ( 0ik  ). As ik  

increases, the tracking error becomes smaller. When 50ik  , 

the tracking error is close to zero, which, however, is at the 
sacrifice of a serious input chattering at the beginning as can 
be observed from Fig. 5, which is due to the initial condition 

mismatch ( (0) 0v   while (0) 1rv  ). In practice, a proper 

integral time should be selected to ensure a good performance 
(integral gain not too small) and an acceptable input 
chattering (integral gain not too big).  

Furthermore, we fix 50ik   and design a combined 

reference. The simulation results are shown in Figs. 6-8. Fig. 
6 shows the cart position and the pendulum angle. It can be 
seen that the cart position tracks very well with the reference, 
regardless of the disturbance from the pendulum swing. Fig. 7 
shows the tracking error and the control input. It can be seen 
that a serious chattering happens for both the control input 
and the tracking error at t = 5, 15, 25, and 40 s. For t = 5 and 

15 s, the ideal input ru  is continuous, but the state reference 

rv  has a step change, which makes the input deviates from 

the ideal input and takes some time to recover. For t = 25 and 

40 s, rx  has a step change which results in a step change in 

the ideal input, and the input takes a transient adjust to catch 
up. A dynamic equilibrium is reached after each transient 
adjustment, where the input keeps close to the ideal input and 
the tracking error varies smoothly. Fig. 8 shows the feedback 
and feedforward components of the control input. It can be 
observed that the feedback works actively to correct the input 

in the discontinuous points, which causes a chattering in the 
feedforward. Then the feedback keeps very small at dynamic 
equilibrium and the input is dominated by the feedforward. 

 

Figure 4.  Cart position and tracking error for a sinusoidal reference. 

 

 

Figure 5.  Control input for a sinusoidal reference. 

 

 
Figure 6.  Cart position and pendulum angle for a combined reference. 
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Figure 7.  Tracking error and control input for a combined reference. The 

ideal input 
ru  is obtained from model inversion. 

 

Figure 8.  The feedback and feedforward components of the control input. 

The two parts are defined as 
fb p

u K e  and  
0

t

i it T k d   ff p
u u K e , 

respectively. 

VII. CONCLUSIONS 

This paper develops an extended PID (EPID) control 

framework with two formulations. EPID takes advantage of 

the state-space description. On one hand, EPID retains the 

simplicity of PID control. On the other hand, EPID makes full 

use of the state information and is more specified for different 

systems, such as SISO/MIMO and lower-order/higher-order 

systems. We highlight the function of a high integral gain, 

which is important to improve the tracking accuracy and 

reject disturbances. EPID gives us some new insights on PID 

control and reveals the relationship between PID control and 

many other control techniques, which displays a very broad 

view. However, like PID control, the stability of EPID may 

not be proved in a rigorous way, which will be left for 

exploration in the future.  
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